Co-evolution between an Endosymbiont and Its Nematode Host: Wolbachia Asymmetric Posterior Localization and AP Polarity Establishment
نویسندگان
چکیده
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination.
منابع مشابه
The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide ...
متن کاملRemoving the needle from the haystack: Enrichment of Wolbachia endosymbiont transcripts from host nematode RNA by Cappable-seq™
Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryo...
متن کاملHigh Pressure Freezing/Freeze Substitution Fixation Improves the Ultrastructural Assessment of Wolbachia Endosymbiont – Filarial Nematode Host Interaction
BACKGROUND Wolbachia α-proteobacteria are essential for growth, reproduction and survival for many filarial nematode parasites of medical and veterinary importance. Endobacteria were discovered in filarial parasites by transmission electron microscopy in the 1970's using chemically fixed specimens. Despite improvements of fixation and electron microscopy techniques during the last decades, meth...
متن کاملAsymmetric cell division and axis formation in the embryo.
Asymmetric cell divisions play an important role in generating diversity during metazoan development. In the early C. elegans embryo, a series of asymmetric divisions are crucial for establishing the three principal axes of the body plan (AP, DV, LR) and for segregating determinants that specify cell fates. In this review, we focus on events in the one-cell embryo that result in the establishme...
متن کاملPolarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos.
Polarity establishment, asymmetric division, and acquisition of cell fates are critical steps during early development. In this review, we discuss processes that set up the embryonic axes, with an emphasis on polarity establishment and asymmetric division. We begin with the first asymmetric division in the C. elegans embryo, where symmetry is broken by the local inactivation of actomyosin corti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014